
Physics 4L - David Kleinfeld

5 Week 5 - Spectral domain circuit analysis. Part 1

5.1 Background

Up to now we learned how to solve the response of a circuit to the switching on or switching
off of a source of an otherwise constant source. As a segue to the case of switching on or
off an source with an arbitrary function of time, we will consider the case of the steady-
state response to a sinusoidal input. Steady-state means that we do not consider the
transient response of the system after a switch, but only the response at the frequency of
the driving sinusoid.

This problem can be solved in time. But it also can be solved much more simply in
frequency space. Let’s review the formalism of Fourier transforms.The transform from
the time domain to the frequency domain is given by:

Ṽ (ω) ≡ F (V (t)) (5.5)

=
1√
2π

∞∫
−∞

dt V (t) e−iωt.

In essence we are projecting the time series V (t) onto all frequencies ω and phases. The
reverse transform is given by

V (t) =
1√
2π

∞∫
−∞

dω Ṽ (ω) eiωt. (5.6)

Self-consistency leads to the definition of the delta function - a pulse of area one whose
width goes to zero as its height goes to infinity. We have

Ṽ (ω) =

∞∫
−∞

dt
1

2π

∞∫
−∞

dω′ Ṽ (ω′) eiω
′t e−iωt (5.7)

=

∞∫
−∞

dω′ Ṽ (ω′)
1

2π

∞∫
−∞

dt e−i(ω−ω′)t.

The delta function, denoted δ(ω − ω′), is defined as

δ(ω − ω′) ≡ 1

2π

∞∫
−∞

dt e−i(ω−ω′)t. (5.8)

Physically, the complex exponent oscillates between plus one and minus one so that the
integral goes to zero, except, when ω = ω′, for which the integral goes to infinity. To
complete the analysis, we have

Ṽ (ω) =

∞∫
−∞

dω′ Ṽ (ω′) δ(ω − ω′) (5.9)

= Ṽ (ω)
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The delta function can be defined as an integral over frequency

δ(t− t′) ≡ 1

2π

∞∫
−∞

dω e−i(t−t′)ω. (5.10)

The delta function must be used in the context of an integral; it does not stand by
itself. Thus ∞∫

−∞

dω′δ(ω − ω′) = 1 (5.11)

and ∞∫
−∞

dω′δ(ω − ω′)f̃(ω′) = f̃(ω) (5.12)

5.2 Utility

Let’s see why this is useful. First, we need the representation of a sinusoid in frequency
space. So let’s take

Vin(t) = A sin(ωDt). (5.13)

Then

Ṽin(ω) = A
1√
2π

∞∫
−∞

dt e−iωt sin(ωDt) (5.14)

= A
1√
2π

∞∫
−∞

dt
eiωDt − e−iωDt

2i
e−iωt

= A
1√
2π

π

i

 1

2π

∞∫
−∞

dt e−i(ω−ωD)t − 1

2π

∞∫
−∞

dt e−i(ω+ωD)t


= A

1

i

√
π

2
[δ(ω − ωD) − δ(ω + ωD)] .

Now we examine a second property of the Fourier transform - the transform of deriva-
tives and integrals. Lets look at the Fourier transform of

dVin(t)

dt
. (5.15)

Then

1√
2π

∞∫
−∞

dt
dVin(t)

dt
e−iωt =

1√
2π

∞∫
−∞

dt
d (Vin(t)e

−iωt)

dt
− 1√

2π

∞∫
−∞

dtVin(t)(−iω)e−iωt

=
1√
2π

∞∫
−∞

d
(
Vin(t)e

−iωt
)
+ iω

1√
2π

∞∫
−∞

dtVin(t)e
−iωt

= 0 + iω
1√
2π

∞∫
−∞

dtVin(t)e
−iωt (5.16)
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where we must assume that the function Vin(t) goes to zero at positive and negative
infinity. So the Fourier transform of the time derivative is just the Fourier transform
of the function multiplied by iω. This transforms differential equations into algebraic
equations. In general,

F
(
dnVin(t)

dtn

)
= (iω)n Ṽin(ω). (5.17)

There is an analogous formula for integrals. We need to postpone the derivation, but

F

 t∫
−∞

dt′Vin(t
′)

 =
1

iω
Ṽin(ω) + πṼin(0)δ(ω) (5.18)

where the second term on the right is the just the average of the function. We can ignore
this for now as long trains of sine and cosine have zero mean.

5.2.1 Impedance

Figure 1: RLC circuit with elements in series and driven by a sinusoid

.

This formalism lets us rewrite the derivative and integral relations between current
and voltage for capacitors and inductors in terms of algebra. The application of Kirchoff’s
voltage law yields

0 = −Vin(t) + L
dI(t)

dt
+RI(t) +

1

C

∫ t

−∞
dt′ I(t′). (5.19)

Fourier transforming yields

Ṽin(ω) = +iωLĨ(ω) +RĨ(ω) +
1

iωC
Ĩ(ω) (5.20)

We see that we can define a frequency dependent ”Resistance”, denoted the Impedance,
Z̃(ω), for capacitors and inductors. Z̃(ω) is in general a complex number. For capacitors,

IC(t) = C
dVC(t)

dt
(5.21)

becomes
ĨC(ω) = iωCṼC(ω) (5.22)
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so

Z̃C(ω) =
1

iωC
. (5.23)

Similarly, for inductors
Z̃L(ω) = iωL. (5.24)

Once you write components in terms of impedance, circuit analysis is algebraic and fast.
Relations like voltage division can be calculated using impedances, and relations like
parallel or serial resistance generalize for impedance.
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